Obiekt

Tytuł: Recursive identification of noisy autoregressive models via a noise-compensated overdetermined instrumental variable method

Autor:

Barbieri, Matteo ; Diversi, Roberto

Data wydania:

2024

Typ zasobu:

artykuł

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł publikacji grupowej:

AMCS, volume 34 (2024)

Abstract:

The aim of this paper is to develop a new recursive identification algorithm for autoregressive (AR) models corrupted by additive white noise. The proposed approach relies on a set of both low-order and high-order Yule-Walker equations and on a modified version of the overdetermined recursive instrumental variable method, leading to the estimation of both the AR coefficients and the additive noise variance. ; The main motivation behind our proposition is introducing model identification procedures suitable for implementation on edge-computing platforms and programmable logic controllers (PLCs), which are known to have limited capabilities and resources when dealing with complex mathematical computations (i.e., matrix inversion). Indeed, our development is focused on condition monitoring systems, with particular attention paid to their integration onboard industrial machinery. The performance of the recursive approach is tested using both numerical simulations and a laboratory case study. The obtained results are very promising.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:86743

DOI:

10.61822/amcs-2024-0005

Strony:

65-79

Źródło:

AMCS, volume 34, number 1 (2024) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji