An extended second order finite difference method on a variable mesh is proposed for the solution of a singularly perturbed boundary value problem. A discrete equation is achieved on the non uniform mesh by extending the first and second order derivatives to the higher order finite differences. ; This equation is solved efficiently using a tridiagonal solver. The proposed method is analysed for convergence, and second order convergence is derived. Model examples are solved by the proposed scheme and compared with available methods in the literature to uphold the method.
Zielona Góra: Uniwersytet Zielonogórski
IJAME, volume 27, number 1 (2022)
Biblioteka Uniwersytetu Zielonogórskiego
Jul 6, 2023
Feb 2, 2023
99
https://zbc.uz.zgora.pl/repozytorium/publication/77358
Edition name | Date |
---|---|
An extended finite difference method for singular perturbation problems on a non-uniform mesh | Jul 6, 2023 |
Kodipaka, Mamatha Emineni, Siva Prasad Kolloju, Phaneendra Jurczak, Paweł - red.
Kamiński, Marcin Supeł, Łukasz Jurczak, Paweł - red.
Ferdows, Mohammad Jumana, Sadia Anjum Jurczak, Paweł - red.
Padmaja, Poosapati Aparna, Podila Gorla, Rama Subba Reddy Jurczak, Paweł - red.
Padmaja, Poosapati Aparna, Podila Gorla, Rama Subba Reddy Pothanna, N. Jurczak, Paweł - red.
Kirubavathi, J. D. Palani, G. Jurczak, Paweł - red.
Nath, S. K. Deb Peyada, Naba Kumar Jurczak, Paweł - red.
Reddy, Shashidar Borra Rajasekhar, M. Saritha, Kallu Jurczak, Paweł - red.