Obiekt

Tytuł: Center-based l1-clustering method

Autor:

Sabo, Kristian

Data wydania:

2014

Typ zasobu:

artykuł

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Kowal, Marek - red.

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, Volume 24 (2014)

Abstract:

In this paper, we consider the l1-clustering problem for a finite data-point set which should be partitioned into k disjoint nonempty subsets. In that case, the objective function does not have to be either convex or differentiable, and generally it may have many local or global minima. Therefore, it becomes a complex global optimization problem. A method of searching for a locally optimal solution is proposed in the paper, the convergence of the corresponding iterative process is proved and the corresponding algorithm is given. ; The method is illustrated by and compared with some other clustering methods, especially with the l2-clustering method, which is also known in the literature as a smooth k-means method, on a few typical situations, such as the presence of outliers among the data and the clustering of incomplete data. Numerical experiments show in this case that the proposed l1-clustering algorithm is faster and gives significantly better results than the l2-clustering algorithm.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:78922

DOI:

10.2478/amcs-2014-0012

Strony:

151-163

Źródło:

AMCS, volume 24, number 1 (2014) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Nazwa wydania Data
Center-based l1-clustering method 14 lip 2025

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji