Obiekt

Tytuł: Multiple neural network integration using a binary decision tree to improve the ECG signal recognition accuracy

Współtwórca:

Abaev, Pavel - ed. ; Razumchik, Rostislav - ed. ; Kołodziej, Joanna - ed.

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, Volume 24 (2014)

Abstract:

The paper presents a new system for ECG ("ElectroCardioGraphy") signal recognition using different neural classifiers and a binary decision tree to provide one more processing stage to give the final recognition result. As the base classifiers, the three classical neural models, i.e., the MLP ("Multi Layer Perceptron"), modified TSK (Takagi?Sugeno?Kang) and the SVM ("Support Vector Machine"), will be applied. ; The coefficients in ECG signal decomposition using Hermite basis functions and the peak-to-peak periods of the ECG signals will be used as features for the classifiers. Numerical experiments will be performed for the recognition of different types of arrhythmia in the ECG signals taken from the MIT-BIH (Massachusetts Institute of Technology and Boston`s Beth Israel Hospital) Arrhythmia Database. The results will be compared with individual base classifiers` performances and with other integration methods to show the high quality of the proposed solution.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:78977

DOI:

10.2478/amcs-2014-0047

Strony:

647-655

Źródło:

AMCS, volume 24, number 3 (2014) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji