Object

Title: Investigation of the Lombard effect based on a machine learning approach

Contributor:

Foryś, Urszula - ed. ; Rejniak, Katarzyna - ed. ; Pękala, Barbara - ed. ; Bartłomiejczyk, Agnieszka - ed.

Subtitle:

.

Group publication title:

AMCS, volume 33 (2023)

Abstract:

The Lombard effect is an involuntary increase in the speaker`s pitch, intensity, and duration in the presence of noise. It makes it possible to communicate in noisy environments more effectively. This study aims to investigate an efficient method for detecting the Lombard effect in uttered speech. The influence of interfering noise, room type, and the gender of the person on the detection process is examined. First, acoustic parameters related to speech changes produced by the Lombard effect are extracted. Mid-term statistics are built upon the parameters and used for the self-similarity matrix construction. ; They constitute input data for a convolutional neural network (CNN). The self-similarity-based approach is then compared with two other methods, i.e., spectrograms used as input to the CNN and speech acoustic parameters combined with the k-nearest neighbors algorithm. The experimental investigations show the superiority of the self-similarity approach applied to Lombard effect detection over the other two methods utilized. Moreover, small standard deviation values for the self-similarity approach prove the resulting high accuracies.

Publisher:

Zielona Góra: Uniwersytet Zielonogórski

Resource Identifier:

oai:zbc.uz.zgora.pl:86685

DOI:

10.34768/amcs-2023-0035

Pages:

479-492

Source:

AMCS, volume 33, number 3 (2023) ; click here to follow the link

Language:

eng

License CC BY 4.0:

click here to follow the link

Rights:

Biblioteka Uniwersytetu Zielonogórskiego

Objects Similar

×

Citation

Citation style:

This page uses 'cookies'. More information