Obiekt

Tytuł: Self-adaptation of parameters in a learning classifier system ensemble machine

Autor:

Troć, Maciej ; Unold, Olgierd

Data wydania:

2010

Typ zasobu:

artykuł

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł publikacji grupowej:

AMCS, Volume 20 (2010)

Abstract:

Self-adaptation is a key feature of evolutionary algorithms (EAs). Although EAs have been used successfully to solve a wide variety of problems, the performance of this technique depends heavily on the selection of the EA parameters. Moreover, the process of setting such parameters is considered a time-consuming task. Several research works have tried to deal with this problem; however, the construction of algorithms letting the parameters adapt themselves to the problem is a critical and open problem of EAs. This work proposes a novel ensemble machine learning method that is able to learn rules, solve problems in a parallel way and adapt parameters used by its components. ; A self-adaptive ensemble machine consists of simultaneously working extended classifier systems (XCSs). The proposed ensemble machine may be treated as a meta classifier system. A new self-adaptive XCS-based ensemble machine was compared with two other XCSbased ensembles in relation to one-step binary problems: Multiplexer, One Counts, Hidden Parity, and randomly generated Boolean functions, in a noisy version as well. Results of the experiments have shown the ability of the model to adapt the mutation rate and the tournament size. The results are analyzed in detail.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:46842

DOI:

10.2478/v10006-010-0012-8

Strony:

157-174

Źródło:

AMCS, Volume 20, Number 1 (2010) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Obiekty

Podobne

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji