Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.
This paper is concerned with the frictionless unilateral contact problem (i.e., a Signorini problem with the elasticity operator). We consider a mixed finite element method in which the unknowns are the displacement field and the contact pressure. The particularity of the method is that it furnishes a normal displacement field and a contact pressure satisfying the sign conditions of the continuous problem. ; The "a priori" error analysis of the method is closely linked with the study of a specific positivity preserving operator of averaging type which differs from the one of Chen and Nochetto. We show that this method is convergent and satisfies the same "a priori" error estimates as the standard approach in which the approximated contact pressure satisfies only a weak sign condition. Finally we perform some computations to illustrate and compare the sign preserving method with the standard approach.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, Volume 21, Number 3 (2011) ; kliknij tutaj, żeby przejść
Biblioteka Uniwersytetu Zielonogórskiego
2024-11-05
2018-08-27
154
https://zbc.uz.zgora.pl/publication/55033
Nazwa wydania | Data |
---|---|
A sign preserving mixed finite element approximation for contact problems | 2024-11-05 |
Fernandes, Luis M. Figueiredo, Isabel N. Júdice, Joaquim J. Sofonea, Mircea - ed. Viano, Juan M. - ed.
Iguernane, Mohamed Nazarov, Serguei A. Roche, Jean-Rodolphe Sokołowski, Jan Szulc, Katarzyna Korbicz, Józef (1951- ) - ed.
Janus-Michalska, Małgorzata Jasińska, Dorota Smardzewski, Jerzy Jurczak, Paweł - red.
Kurama, Onesfole Luukka, Passi Collan, Mikael Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Hild, Patrick Sofonea, Mircea - ed. Viano, Juan M. - ed.
Chau, Oanh Motreanu, Viorica Venera Sofonea, Mircea - ed. Viano, Juan M. - ed.
Fulmański, Piotr Laurain, Antoine Scheid, Jean-Francois Sokołowski, Jan Sokołowski, Jan - ed. Sonnendrücker, Eric - ed.
Myśliński, Andrzej Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.