Obiekt

Tytuł: Modeling and optimization of cutting parameters when turning EN-AW-1350 aluminum alloy

Współtwórca:

Jurczak, Paweł - red.

Tytuł publikacji grupowej:

IJAME, volume 27 (2022)

Abstract:

An experimental investigation is carried out to examine the effects of various cutting parameters on the response criteria when turning EN-AW-1350 aluminum alloy under dry cutting conditions. The experiments related to the analysis of the influence of turning parameters on the surface roughness (Ra) and material removal rate (MRR) were carried out according to the Taguchi L27 orthogonal array approach. ; The analysis of variance (ANOVA) was applied to characterizing the main elements affecting response parameters. Finally, the desirability function (DP) was applied for a bi-objective optimization of the machining parameters with the objective of achieving a better surface finish (Ra) and a higher productivity (MRR). ; The results showed that the cutting speed is the most dominant factor affecting Ra followed by the feed rate and the depth of cut. Moreover, the Artificial Neural Network (ANN) approach is found to be more reliable and accurate than its Response Surface methodology (RSM) counterpart in terms of predicting and detecting the non-linearity of the surface roughness and material removal rate mathematical models. ; ANN provided prediction models with a precision benefit of 8.21% more than those determined by RSM. The latter is easier to use, and provides more information than ANN in terms of the impacts and contributions of the model terms.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Format:

application/pdf

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:69274

DOI:

10.2478/ijame-2022-0024

Strony:

124-142

Źródło:

IJAME, volume 27, number 2 (2022)

Jezyk:

eng

Licencja:

CC 4.0

Licencja CC BY-NC-ND 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Obiekty

Podobne

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji