Oliveira, Fabiane de ; Franco, Sebastiao Romero ; Villela Pinto, Marcio
The aim of this paper is to reduce the necessary CPU time to solve the three-dimensional heat diffusion equation using Dirichlet boundary conditions. The finite difference method (FDM) is used to discretize the differential equations with a second-order accuracy central difference scheme (CDS). ; The algebraic equations systems are solved using the lexicographical and red-black Gauss-Seidel methods, associated with the geometric multigrid method with a correction scheme (CS) and V-cycle. Comparisons are made between two types of restriction: injection and full weighting. The used prolongation process is the trilinear interpolation. This work is concerned with the study of the influence of the smoothing value (v), number of mesh levels (L) and number of unknowns (N) on the CPU time, as well as the analysis of algorithm complexity.
Zielona Góra: Uniwersytet Zielonogórski
IJAME, volume 23, number 1 (2018)
Biblioteka Uniwersytetu Zielonogórskiego
Jul 6, 2023
Mar 31, 2023
68
https://zbc.uz.zgora.pl/publication/80064
Edition name | Date |
---|---|
The effect of multigrid parameters in a 3D heat diffusion equation | Jul 6, 2023 |
Chandrakala, P. Narayana Bhaskar, P. Jurczak, Paweł - red.
Chandrakala, P. Narayana Bhaskar, P. Jurczak, Paweł - red.
Palani, Geetha Arutchelvi, A. Jurczak, Paweł - red.
Swarnakar, D. Kumar, V.G. Soujanya, G.B.S.L. Jurczak, Paweł - red.
Rajaraman, Rengasamy Muthucumaraswamy, Rajamanickam Jurczak, Paweł - red.
Muthucumaraswamy, Rajamanickam Saravanan, Balasubramani Jurczak, Paweł - red.
Bahi, Youssef Gadari, Mhammed El Rahmoune, Miloud Jurczak, Paweł - red.
Palani, Govindasamy Sarojini, A. Jurczak, Paweł - red.