Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.
Neuro-fuzzy systems have proved their ability to elaborate intelligible nonlinear models for presented data. However, their bottleneck is the volume of data. They have to read all data in order to produce a model. We apply the granular approach and propose a granular neuro-fuzzy system for large volume data. In our method the data are read by parts and granulated. In the next stage the fuzzy model is produced not on data but on granules. ; In the paper we introduce a novel type of granules: a fuzzy rule. In our system granules are represented by both regular data items and fuzzy rules. Fuzzy rules are a kind of data summaries. The experiments show that the proposed granular neuro-fuzzy system can produce intelligible models even for large volume datasets. The system outperforms the sampling techniques for large volume datasets.
Zielona Góra: Uniwersytet Zielonogórski
AMCS, volume 31, number 3 (2021) ; click here to follow the link
Biblioteka Uniwersytetu Zielonogórskiego
Jul 21, 2025
Jul 21, 2025
11
https://zbc.uz.zgora.pl/repozytorium/publication/101380
| Edition name | Date |
|---|---|
| GrNFS: A granular neuro-fuzzy system for regression in large volume data | Jul 21, 2025 |
Simiński, Krzysztof Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Suchy, Dawid Simiński, Krzysztof Kitowski, Zygmunt - ed. Piskur, Paweł - ed. Hożyń , Stanisław - ed.
Gierlak, Piotr Muszyńska, Magdalena Żylski, Wiesław (1938-2018) Jurczak, Paweł - red.
Łęski, Jacek M. Henzel, Norbert Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Czabański, Robert Korbicz, Józef (1951- ) - red. Uciński, Dariusz - red.
Czabański, Robert Beliczyński, Bartłomiej - red.
Rutkowska, Danuta Nowicki, Robert K. Rutkowska, Danuta - ed. Zadeh, Lotfi A. - ed.
Patton, Ron J. Lopez-Toribio, Carlos J. Uppal, Faisel J. Korbicz, Józef (1951- ) - red. Patton, Ronald J. - red.