Obiekt

Tytuł: Semi-supervised vs. supervised learning for mental health monitoring: A case study on bipolar disorder

Contributor:

Foryś, Urszula - ed. ; Rejniak, Katarzyna - ed. ; Pękala, Barbara - ed. ; Bartłomiejczyk, Agnieszka - ed.

Subtitle:

.

Group publication title:

AMCS, volume 33 (2023)

Abstract:

Acoustic features of speech are promising as objective markers for mental health monitoring. Specialized smartphone apps can gather such acoustic data without disrupting the daily activities of patients. Nonetheless, the psychiatric assessment of the patient`s mental state is typically a sporadic occurrence that takes place every few months. Consequently, only a slight fraction of the acoustic data is labeled and applicable for supervised learning. ; The majority of the related work on mental health monitoring limits the considerations only to labeled data using a predefined ground-truth period. On the other hand, semi-supervised methods make it possible to utilize the entire dataset, exploiting the regularities in the unlabeled portion of the data to improve the predictive power of a model. ; To assess the applicability of semi-supervised learning approaches, we discuss selected state-of-the-art semi-supervised classifiers, namely, label spreading, label propagation, a semi-supervised support vector machine, and the self training classifier. We use real-world data obtained from a bipolar disorder patient to compare the performance of the different methods with that of baseline supervised learning methods. The experiment shows that semi-supervised learning algorithms can outperform supervised algorithms in predicting bipolar disorder episodes.

Publisher:

Zielona Góra: Uniwersytet Zielonogórski

Resource Identifier:

oai:zbc.uz.zgora.pl:86677

DOI:

10.34768/amcs-2023-0030

Pages:

419-428

Source:

AMCS, volume 33, number 3 (2023) ; kliknij tutaj, żeby przejść

Language:

eng

License CC BY 4.0:

kliknij tutaj, żeby przejść

Rights:

Biblioteka Uniwersytetu Zielonogórskiego

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

28 lip 2025

Data dodania obiektu:

28 lip 2025

Liczba wyświetleń treści obiektu:

9

Wszystkie dostępne wersje tego obiektu:

https://zbc.uz.zgora.pl/repozytorium/publication/101609

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji