A two-dimensional Cauchy Poisson problem for water with a porous bottom generated by an axisymmetric initial surface disturbance is investigated here. The problem is formulated as an initial value problem for the velocity potential describing the motion in the fluid. The Laplace and Hankel transform techniques have been used in the mathematical analysis to obtain the form of the free surface in terms of a multiple infinite integral. ; This integral is then evaluated asymptotically by the method of stationary phase. The asymptotic form of the free surface is depicted graphically in a number of figures for different values of the porosity parameter and for different types of initial disturbances.
Zielona Góra: Uniwersytet Zielonogórski
IJAME, volume 24, number 3 (2019)
Biblioteka Uniwersytetu Zielonogórskiego
2023-07-06
2023-03-03
101
https://zbc.uz.zgora.pl/repozytorium/publication/78409
Nazwa wydania | Data |
---|---|
Generation of surface waves due to initial axisymmetric surface disturbance in water with a porous bottom | 2023-07-06 |
Ray, Swagata De, Soumen Mandal, B.N. Jurczak, Paweł - red.
Kundu, Prabir Kumar Sarkar, Amit Jurczak, Paweł - red.