The flow of an electrically conducting fluid across a vertically positioned oscillating semi-boundless plate with uniform mass diffusion and temperature is examined in this study in terms of the effects of thermal radiation and viscous dissipation. The dimensionless governing equations were solved using an effective and unconditionally stable implicit finite-difference approach known as the Crank-Nicolson method. ; Based on the numerical results, the impacts of various physical parameter values on concentration, temperature; velocity; Sherwood numbers, Nusselt numbers and skin-friction profiles are displayed graphically and their consequences thoroughly analyzed. We observed that when the magnetic field, radiation and phase angle parameters are increased, the velocity is reduced. This shows that plate oscillation, radiation and magnetic fields affect the flow pattern significantly.
Zielona Góra: Uniwersytet Zielonogórski
IJAME, volume 28, number 2 (2023)
Biblioteka Uniwersytetu Zielonogórskiego
2023-07-10
2023-07-10
96
https://zbc.uz.zgora.pl/publication/82341
Sambath, P. Sankar, D.S. Viswanathan, K.K. Jurczak, Paweł - red.
Sivakumar, Pushparaj Muthucumaraswamy, Rajamanickam Jurczak, Paweł - red.
Zigta, Binyam Jurczak, Paweł - red.
Muthucumaraswamy, Rajamanickam Saravanan, Balasubramani Jurczak, Paweł - red.
Palani, Geetha Arutchelvi, A. Jurczak, Paweł - red.
Palani, Govindasamy Sarojini, A. Jurczak, Paweł - red.
Zigta, Binyam Jurczak, Paweł - red.
Manjula, Lingala Muthucumaraswamy, Rajamanickam Jurczak, Paweł - red.