Obiekt

Tytuł: Multiple-instance learning with pairwise instance similarity

Autor:

Yuan, Liming ; Liu, Jiafeng ; Tang, Xianglong

Data wydania:

2014

Typ zasobu:

artykuł

Współtwórca:

Abaev, Pavel - ed. ; Razumchik, Rostislav - ed. ; Kołodziej, Joanna - ed.

Podtytuł:

.

Tytuł publikacji grupowej:

AMCS, Volume 24 (2014)

Abstract:

Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. ; Although they delivered very promising performance, they often require long computation times for instance selection, leading to a low efficiency of the whole learning process. In this paper, we propose a simple and efficient ISMIL algorithm based on the similarity of pairwise instances within a bag. The basic idea is selecting from every training bag a pair of the most similar instances as instance prototypes and then mapping training bags into the embedding space that is constructed from all the instance prototypes. ; Thus, the MIL problem can be solved with the standard supervised learning techniques, such as support vector machines. Experiments show that the proposed algorithm is more efficient than its competitors and highly comparable with them in terms of classification accuracy. Moreover, the testing of noise sensitivity demonstrates that our MIL algorithm is very robust to labeling noise.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:78971

DOI:

10.2478/amcs-2014-0041

Strony:

567-577

Źródło:

AMCS, volume 24, number 3 (2014) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Obiekty

Podobne

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji