Obiekt

Tytuł: A Gaussian-based WGAN-GP oversampling approach for solving the class imbalance problem

Autor:

Zhou, Qian ; Sun, Bo

Data wydania:

2024

Typ zasobu:

artykuł

Współtwórca:

Korbicz, Józef (1951- ) - red. ; Uciński, Dariusz - red.

Tytuł publikacji grupowej:

AMCS, volume 34 (2024)

Abstract:

In practical applications of machine learning, the class distribution of the collected training set is usually imbalanced, i.e., there is a large difference among the sizes of different classes. The class imbalance problem often hinders the achievable generalization performance of most classifier learning algorithms to a large extent. To ameliorate the learning performance, some effective approaches have been proposed in the literature, where the recently presented GAN-based oversampling methods are very representative. However, their generated minority class examples have the risk of high similarity and duplication degree. ; To further ameliorate the quality of the generated minority class examples, i.e., to make the generated examples effectively expand the minority class region, a novel oversampling approach named the GWGAN-GP is proposed, which is based on the Gaussian distribution label within the framework of a Wasserstein generative adversarial network with gradient penalty (WGAN-GP). Our GWGAN-GP approach incorporates the Gaussian distribution as an input label, thereby making the generated examples more diverse and dispersive. ; The examples are then combined with the original dataset to form a balanced dataset, which is subsequently utilized to evaluate the classification performance of three selected classification algorithms. Experimental results on 16 imbalanced datasets demonstrate that the GWGAN-GP not only generates examples that better conform to the distribution of the original dataset, but also achieves superior classification performance. Specifically, when combined with the KNN classifier, the GWGAN-GP significantly outperforms other oversampling approaches considered in the study.

Wydawca:

Zielona Góra: Uniwersytet Zielonogórski

Identyfikator zasobu:

oai:zbc.uz.zgora.pl:86793

DOI:

10.61822/amcs-2024-0021

Strony:

291-307

Źródło:

AMCS, volume 34, number 2 (2024) ; kliknij tutaj, żeby przejść

Jezyk:

eng

Licencja CC BY 4.0:

kliknij tutaj, żeby przejść

Prawa do dysponowania publikacją:

Biblioteka Uniwersytetu Zielonogórskiego

Kolekcje, do których przypisany jest obiekt:

Data ostatniej modyfikacji:

Jul 29, 2025

Data dodania obiektu:

Jul 29, 2025

Liczba wyświetleń treści obiektu:

17

Wszystkie dostępne wersje tego obiektu:

https://zbc.uz.zgora.pl/repozytorium/publication/101673

Wyświetl opis w formacie RDF:

RDF

Wyświetl opis w formacie OAI-PMH:

OAI-PMH

Obiekty Podobne

×

Cytowanie

Styl cytowania:

Ta strona wykorzystuje pliki 'cookies'. Więcej informacji