Object

Title: Interval analysis for certified numerical solution of problems in robotics

Creator:

Merlet, Jean-Pierre

Date:

2009

Resource Type:

artykuł

Contributor:

Rauh, Andreas - ed. ; Auer, Ekaterina - ed. ; Hofer,Eberhard P. - ed. ; Luther, Wolfram - ed.

Subtitle:

.

Group publication title:

AMCS, volume 19 (2009)

Abstract:

Interval analysis is a relatively new mathematical tool that allows one to deal with problems that may have to be solved numerically with a computer. Examples of such problems are system solving and global optimization, but numerous other problems may be addressed as well. ; This approach has the following general advantages: (a) it allows to find solutions of a problem only within some finite domain which make sense as soon as the unknowns in the problem are physical parameters; (b) numerical computer round-off errors are taken into account so that the solutions are guaranteed; (c) it allows one to take into account the uncertainties that are inherent to a physical system. ; Properties (a) and (c) are of special interest in robotics problems, in which many of the variables are parameters that are measured (i.e., known only up to some bounded errors) while the modeling of the robot is based on parameters that are submitted to uncertainties (e.g., because of manufacturing tolerances). Taking into account these uncertainties is essential for many robotics applications such as medical or space robotics for which safety is a crucial issue. ; A further inherent property of interval analysis that is of interest for robotics problems is that this approach allows one to deal with the "uncertainties" that are unavoidable in robotics. Although the basic principles of interval analysis are easy to understand and to implement, this approach will be efficient only if the right heuristics are used and if the problem at hand is formulated appropriately. In this paper we will emphasize various robotics problems that have been solved with interval analysis, many of which are currently beyond the reach of other mathematical approaches.

Publisher:

Zielona Góra: Uniwersytet Zielonogórski

Resource Identifier:

oai:zbc.uz.zgora.pl:78778

DOI:

10.2478/v10006-009-0033-3

Pages:

399-412

Source:

AMCS, volume 19, number 3 (2009) ; click here to follow the link

Language:

eng

Rights:

Biblioteka Uniwersytetu Zielonogórskiego

Objects

Similar

This page uses 'cookies'. More information